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FAST, POSITIVE AND CONSERVATIVE SCHEME FOR
CHEMICALLY REACTIVE HYPERSONIC FLOW

ENRICO BERTOLAZZI AND VINCENZO CASULLI

Universita degli Studi di Trento, Dipartimento di Matematica, 38050 Povo, Trento, Italy

ABSTRACT

A finite difference method for solving the quasi one-dimensional non-equilibrium hypersonic flow equations
in a diverging nozzle is presented and discussed. In chemically reacting flows the system of equations to
be solved is very stiff. Some reactions may be several orders of magnitude faster than others and generally,
they are much faster than the convective process except for very high Ma numbers. For this reason the
development of a numerical scheme whose stability is independent of the chemical reaction rates is of
importance. The main advantage of this scheme is the conservation of each chemical component, the
positivity of densities and vibrational energies, as well as its relative simplicity, which results in a fast
computer code.

KEY worDS Hypersonic flow Finite difference method

THE GOVERNING EQUATIONS FOR QUASI 1-D INVISCID HYPERSONIC FLOW

In the present study we will discuss a numerical method for quasi one-dimensional hypersonic
flows. For this purpose consider the following equations for hypersonic flow in a diverging nozzle:
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Tot | ox dx
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380 E. BERTOLAZZI AND V. CASULLI

with py, p,, ps, ps, ps being the densities of the five species N,, O,, NO, N, O respectively,
p=p1+p,+p;+p,.+ps is the total mass density, u is the velocity, m=pu is the momentum,
p is the pressure, E,,, E,,, E, 5 are the vibrational energies of N, O, and NO, respectively, and
E is the total energy. wy, w,, w3, W, Ws, are the source terms arising from the chemical reactions.
S(x) is the cross-sectional area of the nozzle along the x-axis. These equations are closed with
the assumption of calorically perfect gas for each specie which yields the following equation of
state:

S P
p=2, — AT &)
k=1

k

where # is the universal gas constant, M,, M,, M;, M,, M are molecular masses, and the
temperature T is determined from the following energy relation®:

c) mu
=) pC,T+ Z (ph +E;k)+—2~ @)
k=1

=1

where C,, is the specie specific heat and h$, h3 and k3 are the heats of formations for the diatomic
species N,, O, and NO, respectively, and are summarized in Table 1.

Equilibrium and vibrational energies are correlated by translational and vibrational
temperatures as follows:

o, 1 e, R

P el @ -1 M, TP apl©T) 11 M, ©)

In (5) T is the translational temperature and T, are the vibrational temperatures for the species
k. The coefficients @, are obtained from spectroscopic data'” and are summarized in Table 1.
The vibrational-translational rate equation is derived in Anderson! and needs the Landau—Teller
relaxation time:

S

Pj —1y3 a
> exp[A4,(T ™13 —0.015u}/4)—18.42
101325 ;= M; pLA( #if*) 1 o,

; _ = ©)
z

‘_j M1+M
M;

that are functions of pressure and temperature; these relations are presented as semi-empirical
equations which are valid over a temperature range®!° from 300 to 9000 K.

The chemistry is modelled by a Dunn and Kang!? air model, except that the ions and free
electron, and the associated reaction steps are not included. This model comprises the five species
N,, 0,, NO, N, O, seventeen reactions and four temperatures. The chemical reactions to be

Table 1

e (K) A B® (kJfkg)
N, 2270 220 —33786
0, 3390 129 ~15577
NO 2740 168 —21056
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CHEMICALLY REACTIVE HYPERSONIC FLOW 381

considered are:
N, +Me2N+M
0,+M«20+M
NO+Me-N+O+M ¥))
N,+O0-—NO+N
NO+0O«0,+N

where M represents any of the five species. The reaction rate for each species is determined from
its forward and backward reaction rate coeflicients. These coeflicients are given by the following
equations®-13:

P1 Pm Pas P4 Pm 2
K, —Ltm_ g 2287 -rr—-Qr
: 1( S1m M1 Mm bium M4 M4 Mm) 171 17a

5
P2 Pm Ps Ps Pm 2
R,= K, P2Pm_p PsPs Pm) p o _Qr
2 z:‘,( Jam a1, M, """MSMSM,,,) 2 TS

5
P3 Pm Ps Ps5s Pm
Ry= K, +t3fm g T4050m ) Fora—Quryr 8
3 g]( f3m M3 M,,, b3,m M4 M5 Mm) 3’3 374'5 ( )
b ps g Bs'pe
MM, “M,M,
P3s Ps g P2 P4
M,Ms;  “M,M,

where we have used the mass relations M, =2a, M,=2b, My=a+b, M,=a, Ms=>b and the
shortcut:

=K, rrs— K, rir,

= Khr3r5 — Kb5r2r4

a= ., p=b P ko1,2,3,45
a+b’ a+b M,
5 5
Fk= Z ka'mrm, Qk= z Kbk'mrm, k=1, 2, 3 (9)
m=1 m=1

The parameters K ;, K, are modelled by the Arrhenius formula®-®°. The source terms w, ... ws
are obtained by combining all the reaction rates that correspond to the production or the
consumption of species k:

wy=M,;(—R,—R,)

wy=M,(—R;+R;)

w3=M;(—R;3;+R;—R;) (10)
wa=M,(2R,+R;+ R, +R;)

ws=Ms(2R,+R;—R;—Ry)

The total density of nitrogen is:

pPn=prtap3+ps (11)
and similarly the total density of oxygen is:
Po=p2+Pp3+ps (12)
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382 E. BERTOLAZZI AND V. CASULLI

Then we have:

(on)e+ (upn)c=wy

(Po)e+ (upo)s=wo (13)
where

Wy=w; +aw;+w,

Wo=w,+ s+ w; (14)

are the reaction rates of total nitrogen and oxygen. These conservations imply that wy=wy=0.
Consequently:

5
Y wi=wy+wo=0 (15)
i=1
Thus the total mass is conserved as well. The production and consumption part of the source
terms will be denoted with w* and w™ respectively.
In order to simplify the construction of the upwind scheme a different form for the total energy
equation is derived as follows. By setting:

3 3
E=E—Y Eyu— Y phf (16)
k=1 k=1
the energy equation in (1) can also be written as:
3 3
(Sé")x+[S Y Eut+pdy )] +[Su(& +p)]x+|:5u x (Evk’*'pkhl?):l =0 (17)
k=1 t k=1 x
which, using the densities and vibrational energies relations becomes:
(88),+[Su(&+p)l, =W (18)
where
3 - + -
We=— 3 (h,?wk+——E“" B W p a2 E,k> (19)
k=1 Tk Pr Px
The state equation now takes the form:
o Pr
2 M
p=ﬁ<8—%—) where ﬂ=.%-£5; (20)
Z PiCox
k=1
From (20), one has:
1
) ) M C,
%:ykﬁ with 3= 5o @1)
) Z L Z pjcvj
j=1Mj j=1
-and
u? op op op
oo P b5 3 B oE.. 2P (22)
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CHEMICALLY REACTIVE HYPERSONIC FLOW 383

NUMERICAL SOLUTION TECHNIQUE

Consider a discretization of the one-dimensional physical domain into a set of elementary line
segments of length Ax. Then consider the integral form of (1) over a line segment Ax yielding:

a Xi+ 12
PR Sx)U(x, t) dx+S(xp4 12)F(U(xi4 1725 1)) = S(Xi— 172) F(U (x; - 12, 1))
Xi-12
Xis 12 Xi+ 12 dS
=J S(x)W(x,t) dx+J — (x)P(U(x,t))dx (23)
Xi_12 Xi-112 dx
Now we use the mean value approximations:
(xi+ 112
S(x)U(x;, t)z—l— S(x)U(x,t) dx
Ax vyXi-1n
1 (*xie12
S(x)W(x;, t)~— S(x)W(x,t)dx 24)
Ax J,. | 2
ds 1 (xi+12
8 P, | )P, 1) dx
dx Ax ), .a
so that a semi-discrete approximation of (23) is:
dU(x;, t)+S(xi+ 172)F(U(x; 4 172, 1)) = S(x;_ 1)) F (U (X; - 12, t))= Wi, t)+g§ ;) P(U(x;, 1))
de S(x;)Ax dx S(x;)
(25)

In order to specify S(x;+1/2)F(U,+ 12, t) we decompose the flux SF in two parts, which accounts
for the flux from left to right and for the flux from right to left. From the homogeneity of F one has:

SF(U)=SAU)U (26)

where A(U) is the Jacobian of F(U) (see Table 2). Since A possesses a full set of linearly
independent eigenvectors one can write:

AU)=T"'(U)AU)T(V) 27)
where A(U) is the eigenvalue diagonal matrix. Next we define:
AX(U)=T Y U)AX(U)TU) (28)

where AT(U)=diag(2f(U), 2 (U), ..., A% (U)) with:

2{(U)£14,(U)]
2

so that A(U)=A*(U)+ A~ (U). Assume now that the flux travelling across i+3% in the positive
x-direction originates at point i while the flux travelling in the negative x-direction originates
at point i+ 1. Specifically, by setting

FE(U)=A*(U)U (30)

2E(U)= (29)

we define
S(6i412)F (U (X4 1720 )R SF (U +5;41F " (Upey) (31)
For an easy construction of A¥(U) we consider that the Jacobian A(U) has the eigenvalues
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384 E. BERTOLAZZI AND V. CASULLI

Table 2 Jacobian matrix A(U)

u(]—&) ‘e _up—l .p_I
P 14 4
0 0
P ,,(1_£5_> s
P p P
_vEy, _tB | By 0
P P 4
_“Euz il _UEuz u Evz 0
P P P
_vEs _uEus u Eus 0
P P P
Op 2 dp 2
B A L _ 2l 0o o0 o0 2-
7y B (2-P)u 8
p €+p) (3p 8+p) E+p P
uf o2 -22F o= -2Z8)Y1 0 o o | Z=E_pu 1+B)u
(3m P aps ) P o (I +5)
given by:
A(U)=diag(u, u, u, u, u, u, u, u, u+c, u—c) (32)

where c=./(1+f)p/p is the frozen speed of sound. Using the matrix T of the corresponding
eigenvectors we are able to rapidly construct the matrices A,(U), 4,4.(U) and A,_.(U) as:

AU)=T"(U)A,TU)
Au+c(U)= T 1((])1\14-!1’1"([]) (33)
A, (U)=T7}(U)A,-TWV)

with
A,=diag(1,1,1,1,1,1,1,1,0,0)
A,,..=diag(0,0,0,0,0,0,0,0,1,0) (34)
A,_.=diag(0,0,0,0,0,0,0,0,0, 1)
so that:
AX(U)=u*A,U)+ u+c)* A4 (U)+ (u~c)* 4, (V) (35)
The matrices 4,(U), A,..(U) and A,_.(U) are shown in Tables 3, 4 and 5. We now define:
F,U)=A4,0)U, F,,(U)=A4,.,(U)U, F,_(U)=A, (U)U (36)
so that
FiU)=u*F (U)+u+c)*F,, (U)+@u—c)F,_(U) (37

If the fluxes are evaluated at time level n an explicit upwind scheme results. If the fluxes are
evaluated at time level n+ 1 the resulting scheme is fully non-linear at each time step. Because
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Table 3 Matrix A,(U)

385

N

+

I
+
«
~——

1 b %p _p1 bp PLg, P
pc? Bpy pc® Ops pc’? pc?
0
_ps Op j- b5 O 5 5, _ps
pc2 6p, pc‘? 8p5 p02 pc2
_Es Op _Ea 0 |, BuEu, BE,,
pc? 8p; pc? Bps pc? pc?
_Euz 0p _Es Op 1 BuEyo _BEws
pc® dp; pc? Ops pc? pc?
_Ews op _Es O 1 Pubvy _BEss
pc® dp; pc? dps pct pc?
1 8p 1 8p u? u
“(’-:fap,) “(’—?5;;) o000 b= s
1 0p 1 0op
2f,_ 4 _9p W2 o 2 CP.
u (1 2(;2 apl) (‘ 2C2 ap5) 0 0 0 Eu_s _Eﬁ
ro 1o Fe 72
B 0p, B 9p;
Table 4 Matrix 4, , (U)
p1 “"_P_,,) J’L(.’.."’i_u pr () B P18
2pc \ ¢ Opy 2pc \ c Ops 2pc c 2pc®
0
ﬁ(i"’_l’_u) &(12_.,) L5 ,_Ez) psh
pc \ ¢ dp; pc \ c dps 2pc ¢ 2pc?
Evs (1 0p _ ) B (190 Eus (l_ﬁ BE,
2pc \ ¢ 8p, 2pc \ c Ops pc \2 2 2pc?
Eve ii&_u) Eye (i_"’L_,,) 0 Eve (l_ﬂ) BEy,
2pc \ ¢ 8p; 2pc \ ¢ Ops pc \2 2 2pc*
Eyg iﬂ_u) CBws (10p Eys (1_& BEus
2pc \ ¢ dp; 2pc \ c dps pc \2 2 2pc®
u u u
() (e 1, , o1 =< (1432
_.E_*..I__BL _u+_{_ap ’ i__ﬂ‘. c/ 2¢
2 " 2¢8p; 2 2cdps 2 2
CNEI LugE 1 B
7 R '3 2 % B (u? ¢
0 0 0 2 —|=—+5+u
u _xg u o c 2¢\ 2 B
2t z %
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386 E. BERTOLAZZI AND V. CASULLI

Table 5 Matrix A,_(U)

o1, 10p p1 13».) __/i'_( B pif_
2pc (u+ cap,) 2pc (u+ ¢ dps 2pc I+ c 2pc?
0
Ps 13_p) b i_‘?}’_) ﬁ_( Bu psp
pe (u+ ¢ dps pe \" T op; 2 U T e 2pc®
Ev, u+iﬂ,— cen E"‘ u+i£€.) Ey, _i _.ﬁ_u. ﬁi”_
2pc c dpy 2pc c dps pc 2 2 2pc?
Eyo 1 31’) Ey»p 1_ 6?) Eys ( 1 pu BE,,
2pc (u+ cdpy 2pc ut c dps 0 pc 2 2 2pc*
Evs (u+_!_ﬂ_) Evs u+.’..ﬂ.) Evs (_i _ﬁ_u &’_ﬁ.
2pc ¢ dp; 2pc c dps pe 2 2 2pc?
u u u
(-+2) 21, , .1 -9 ey
v, 1% w, i0p £y | H10) %
27 2¢dp, "2 7 2c0ps 27 2
u® ¢ u® ¢ 1 pfu
(%17_ ) (55+E_u) 6 0 o _(§+%) ﬁ(ﬁ+3—u)
v, 10p v, 10p wooe_ ) |\ s
2 %o 2V 2 Ops %" p "

of the stiffness of the problem an explicit scheme is not convenient. However, the large non-linear
system of equations arising from the implicit scheme cannot be easily solved. As a first approach
fluxes are linearized as:

FU" )= FU")+AUNU " —U"=AU"U"*! (38)
We can choose a semi-implicit discretization of (25) as:
Ui'“—Ui'_I_SmA_(U?“)U?L‘ +8,[4* (U})—A~(UNIU =S, 1 A* (U}~ )UEE}

S;
At Ax

=SW(U*, UD+PUI, UT) (39)

where the source term W(U?*!, U7) is an approximation of the term W(U(x;, t)) and the term
P(U?*!, U?) approximates:

PG 1) 3 (x) (40)

Equation (39) constitutes a large block tridiagonal system whose blocks are full 10 x 10 matrices.
To simplify the computational algorithm even further, we reformulate flux (31) as:

SiG*(UIU+8,416G™ (Uis1)Uisy 41)
with G* and G~ being almost diagonal matrices satisfying:
G*(UYU;=A"(U)YU; and G (U)U;=A"HU)U, (42)
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CHEMICALLY REACTIVE HYPERSONIC FLOW 387

By this approach the finite difference equation (39) is replaced by
Uit — U?+S;+1G'(U§'+ DU +8IGH (U -G~ (UNMU* ! =5,-,G* (UF- U]
i

S
At Ax

=SW(UT, UD+PUI™, Uz

Now we focus attention to the construction of the matrices Gt and G~.

EVALUATION OF G*

We can construct G* by definining the matrices G,, G, .. and G,_, satisfying the relations:

GU)U=F(U), G,(U)U=F,/(U), G, (U)U=F,_(U) (44)
so that G* can be taken to be:
GE(U)=u*(U)+u+c)*G,: (U)+(u—c)*G,_(U) 45)

After some manipulations one obtains:

([ Prr (.~ } (2 }
1+8 2(1+8) 2(1+8)
_ﬁP_z P2 P,
1+8 2(14+-8) 2(1+8)
Bp; P3 P3
148 2(1+B) 2(1+p)
Bp, Pa Pa
1+4 2(1+p) 21+ p8)
Bps Ps Ps
1+8 2(1+8) 20+ 8)

— ﬁEvl _ Evl = Eul
Fu(U)— E‘B‘ ’ Fu+c(U)_' 2(1+ﬁ) ’ Fu-H.'(U) 2(1+ﬂ)
Evl Evz EvZ
1+8 2(1+8) 2(1+8)
PEws . Es_
1+8 2(1+8) 2(1+8)
m—ﬁ;— m-+pc m—pc
1+8 2(1+p) 21+p)
Bu
" 30+h) T Y el
k ) \"20+5) " 2 \"20+h) " 2
(46)
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Thus, the matrices G,, G, .. and G,__ can be taken to be:

matrix G,
g
1+p 0
0 0 0
B
0 1+8
_B_
1+
B
0 T+7 0 0
_B_
1+f
B
uf
o 2(1+P)
matrix Gyuye
1
T+ o
0 0
1
0 VEY)
1
2(1+p)
1
VEY)) 0 0
_ I
2(1+P)
1 Bu B8
0 0 2(1+B)  4c 2
Cc— 'gll ]
0 0 -
2(1+P) 2
Note then that the matrices G can be written in the form
@t 0 0
Gt=| 0 Mt O (47
0 0 A%
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matrix Gy—.
1
Ry 0
0 0 0
1
0 2(1 + P)
1
2(1+pP)
1
’ EVEY) 0 0
1
2(1 +P)
1 Bu Jij
0 0 Y T %
—-c—=u
2 1
0 0 O] ;

where % is a 5 by 5 diagonal matrix, .# is a 3 by 3 diagonal matrix, and #"is a 2 by 2 full
matrix. Once the matrices G* have been defined, the finite difference equation (39) can be
replaced with the simpler equation (43).

DISCRETIZATION OF CHEMICAL REACTION TERMS

In order to develop a stable and conservative numerical scheme for the first five components
of the differential system we write the source terms (w;);- in the form €(p)p where €(p)is a 5
by 5 matrix with the properties:

(@ ¢;<0,c;=0fori#j

5
(b) Y cy=0fori=1,2,3,4,5 (48)

j=1

Matrix € with properties (a) and (b) is not unique, in fact, terms like Bp;p; can be written in
either form:

(BP.')P,' or (Bpjp: (49)
In this case we write:
0(Bp)p;+ (1—0)(Bp))p; (50)

with @ being a weight parameter to be specified in such a way that properties (a) and (b) are
both satisfied. Considering that we do not want positive terms on the main diagonal some
choices are forced. Thus, a term Bp;p; in w; where B is negative must be expressed as (Bp;)p;.
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In summary, from (11) we have:
wy=— (T + K 4r5)p) + (2Q174)ps +[1—051(2K473)p4 + 05 (2K 40r4)p3
wy=— ([ + Kysta)pa + QQurs)ps +[1— 012K ;573)p5 + 05 (2K ;5 frs)ps

wy= —(T3+Kpsrs+Kpsrs)ps+[1-0;] (Qs E)Ps + 97(93 >P4

1 —06](Kb5 %’)m +86(Kb5 %)Pz +[1 —95]<Kf4 'El)Ps + BS(KI4 ;—:‘)Pl (51)
wa=— (274 +Qsrs + Kpsrs+ Kpsra)ps +T1py +T3p30+

f1- 91]( Kf4"1)Ps +0 < K,r4"5>ﬂ1 +[1- 92]( Kfsra)Ps'*‘ez(Kfs“Ts)Ps
W= —(2Q,rs+Qar, + K pqry + K ysr3)ps+ 120, +T3p3 8+

[1- 93]( Kb4"3)P4 +0;3(Kpafra)ps+[1— 94]( Kbs"z)P4+ 94<; Kbs’4)Pz

The conditions (a) and (b) are satisfied when 6y, 0,, ...

0s=a(2—86,), 05=F2—0,),

, 05 are given by:

1
by=c, By=3: (1—a0s), 0=y (1=F0)  (2)

where 8,, 8,, 03, 8, are taken in the interval:

b a
8, 026[1 -, 1]0[0, 1], 05, 946[1 —;, 1](‘\[0, 1] (53)
a
so that, finally,
Matrix of chemical reaction C
+2Q) 14
Ty — Ky ,rs 0 (1 - B03)Kyqra 0
a-—b+4b0;
————Kyra
a
2,rs+
0 ~I3 = Kpsry (1—adz)Kyers 0
b—a+ab,
e N
o, 6, ~I'3—~ Kyers Qars+ Qara+
(1 - ?)K.“rs (l - ?)Kbsr‘l b+ b0 b 9
’ a—b+b0s —a+
—1\“1‘4 —a——qf\asrg _gbL'I{Iqu
p ala+ —2Qyrg — Qars g(1 —61)Kp
1,. b
Ty 2Kyt 0
afy Ky ers ~RKpgra— Kysrg %(1 —02)Kyqra
b
a4+ Bra+ z(l - 93)]\’541’3 —2Qors — Qary
0
04 ,. . b . . .
—§-I\bsr4 038Ry 474 ;(1 —04) K572 =Ry r1— Kygra
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Now we can write the semi-implicit scheme for the first five equations in the following way:
s, p?+l_p?+si+1$i_+1p?:11+Si(°(£l+ — L) =8, L it

=581 )it (54)

At Ax
and using the definitions of G,, G, . and G, _ results in:
) + et
&Lt =diag(u‘i b +(u,+ci) +(ui ) ) (55)
1+6; 2(1+8) 2(1+8)

and the function matrix €;(p"* ) is the matrix % evaluated with I, Q, K, K, computed at time
level n. Note that &} is non-negative while & is non-positive. The finite difference equation
(54) constitutes a block tridiagonal system whose main diagonal block is non-linear. To solve
this non-linear system, an iterative procedure has to be used. A convenient iterative scheme for
(54) is:

S, (P}'“)'“—P?+S:+1$&1(P?Ix‘)'“+S.-(-‘f:+ ~L W) =8 L ()
) At Ax

=SE(; ) )i (56)
starting with (p?*1)°=p? until convergence is reached.

POSITIVITY OF THE METHOD

The iteration formula (56) allows us to maintain positivity of the densities at every time step.
To see this, we prove the following theorem:

Theorem 5.1 Let the semi-implicit difference approximation be:

[I+LF —L7 +CSipi ™ — L=y 81-1pit  + Lt 1 Six 1P L1 =Si0] (57
with i=1, 2, ..., m—1 where:
At _ At
L+=A—x-$+, L =A—x-(£ 1, C§= —At(g‘(p;)

and for sake of simplicity p}=(p}*!). Clearly, L} and —L; are non-negative diagonal matrices
and the matrix C; satisfies:

(CHi =0, (CHu<0, k#1 and Chu=— Z (Chu
Py

Ifp*t1>0,p2% 1 >0 (boundary conditions) and p7 >0, one has p}*! >0foralli=1,2,...,m—1.

Proof
We can regard the iteration step (57) as an inversion of a linear system of the form:
M(p)p'*t=2 (58)
where

Z,=5:p} +SoL3 o+
Z,=S;p} fori=2,3,...,m—2 (59)

- nt1

Zm—l =Sm—lp::—1p;ln—1—Smmem
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and
§,Dy  S,Ly i
~S,Lf  S;D% S,L3
M(pY)= —S,L} : (60)
: : Sp-1Li-1
| _Sm—2L;—2 Sm—lDEn-—l_

with Di=1+L;} —L; +C.. Since C} are weakly diagonally dominant (along the columns), with
positive elements on the main diagonal and non-positive elements elsewhere, and since L;" and
—L; are non-negative diagonal matrices, it follows that M is a strictly diagonally dominant
matrix along the column with positive elements on the main diagonal and non-negative ones
elsewhere. Thus M (p') is an M-matrix. Consequently, [M(p")]~! =0and hence [M(p")]*Z >0.

The result above proves that each iteration (p"*!)! is positive and, when convergence is
achieved, the resulting p"*! is positive as well.

When convergence is reached the source terms are:

w=(6)(pn+l)pn+l (61)
For the conservation of species masses we need
Wy oy 410, =0, Wy + s +05=0 (62)

which are verified by straightforward computation. This means that the numerical method
conserves the total amount of nitrogen and oxygen. Equations (62) are used as convergence
criterion for iterations (56).

DISCRETIZATION OF VIBRATIONAL TERMS

In the previous sections we have developed the upwind scheme for the flux, separating the
vibrational energies and density from the other conserved variables. In this section we analyse
the approximation of the source terms W(U"*?, U") for the equations of vibrational energies.
In order not to destroy the positivity of the resulting flux matrix, we approximate the source
terms as:
W= it T B Wi a Vi g (63)
Tk,i Pu.i Pu

With this choice the finite difference scheme is of the form:
E;i'—Ex; +S;+ WA EGT 4 S — M VEGT =S M EGT2
At Ax

E " -E n+1 -
= S‘( eqk,i ki wk i Eeqk ; w'k.i E;ZI 1) (64)
Tk.i Pk i Pr.i

s;

where:
B (w+c)* + (u;—c))*

- 4
= g ) T 204

(65)
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Equations (64) can be rewritten as:

At At
gt (Ve ge o )+ s, gt (gt Ve simath (et

Tkl pkl
=s( ,k,+At( “’“+'—”*—'EW>> (66)
Tri  Pui

Note that (66) constitute a linear system whose coefficient matrix is an M-matrix and the vector
on the right hand side is always positive. Thus the vibrational energies maintain positivity at
each time step. We also note that the unknowns E ;' are separated for every k, then we can

solve three simpler tridiagonal systems rather than one block tridiagonal system.

DISCRETIZATION OF REMAINING TERMS

In the momentum and total energy equations of system (1) there is no way to ensure positivity
of the pressure for arbitrarily large time steps. Actually, we use a simple discretization that uses
the information of already evaluated variables. Next, if a negative pressure is encountered we
repeat the evaluation with a smaller time step. Explicitly, by setting w=%,(p?**)p!*!, from (20)
and (21) we have:

3 By —Et! ”
Wy (U, U)=— ¥ (h,?w,‘+ o ZERT | Wi p ) Vet E."“)

nt1 ceakd T gy ekl

k=1 Tk,i Pk,i ki
N\ S —S;
Un+l’ U= n+ 1 ('j"-'+l— i i i+1 i-1 67
p( i i) ﬂl ( i 2 ) 2Ax ( )
Thus, by setting
_Si+l—Si-l ﬂ’.’+l.li;.. Sl'+1_Si—1 ﬁ)}-&-l
Pi= 20x 12 2Ax (68)
0 0
and
Vi=(';"> (69)

the finite difference system for the momentum and total energy becomes:
V"“ +Sl+l'/‘|+an:ll+Si('/VI+—‘/V;_)V?+1_Si—l"' Vn“ ?‘Vn-n ( 0 ) (70)

S;
At Ax

where A"is defined as in (47).

We,

BOUNDARY CONDITIONS

As an inflow condition, supersonic inflow is chosen. All the characteristic lines are entering and
consequently all the variables have to be specified. The outlet is subsonic and thus one eigenvalue
has opposite sign. This represents the disturbance coming from downstream. In this case one
condition must be specified and therefore the pressure at the outlet is prescribed. The boundary
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conditions are applied using the method of Courant-Isaacson and Rees®. For the actual
calculations it is advantageous to rewrite the equations for m and & as equations in u and p,

4 uu, +B5—ES—
p pS (71)
pe+p(1+ B, +up,=We
where
1dS 3 +
We="3 (1im Bh,)wi—up(u B)———ﬂ ) ( En—Eu W p Mg oY )
i=1 T Pk Px Px

(72)

using matrix notation we can rewrite system (71) as:

(“) +A(“> =B (73)
p)e \p/.

where
" 1 p S,
A= p|, B=|ps (74)
p(+p) u We
Next we multiply this system by the matrix T:
L
c
T= P (15)
1
1 —=
pc
obtaining the new system:
T(“) + TA(“) —TB (16)
D/ P/ x
Observing that:
TA=AT (77)
where A=diag(u+c, u—c), we obtain:
S, 1
u,+p,—+(u+c)[u +p— ]=£—+—- We
pS pc
1 S, 1 (78)
—p—— (- c)[u —pe— ]—5—‘——W
pS pc
Using the directional derivative:
d 0
Dy=—+2— 79
o Tox )
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after some manipulations the complete system takes the form:

Ws—D, D,S
( DuPi'*'L_Bpi:wi_pi_
p(1+8) S
We—D E _,—E + c DS
DuEvk+ d uP Evk:‘ eqx Lk+w—kEeqk+’w_kEuk_Etk =
p(1+p) Tx Px Px S
1 S 1 (80)
Du+cu+_Du+cp=£—x+— Wd’
pc pS pc
1 S 1
D,_u——D,_p=L22__w,
\ pe pS pc

Using this relation it is easy to construct the one step method of characteristic. But because of
the very stifiness of the problem we assume that at the outlet the gas is in chemical equilibrium
so that W,=0.

NUMERICAL RESULTS

The code was tested with two different problems: the Antibes nozzle, defined during Antibes
Workshop I, January 1990 and Antibes workshop II, April 1990 and the Chiang and Offmann
nozzle!'4.

Antibes nozzle

In the Antibes test case the nozzle shape is as follows: the throat radius, ro=0.003 m; the half
cone angle ®=10°; length=1.13 m, with the boundary conditions:

Cn2=109.53%
Pin= 84590000 Pa Cor= 6.89%
1, =1621 m/sec Crno=14.78%
p.=46.21 Kg/m? Cy= 027%

Co= 8.53%

ANTIBES TEST CASE (500 gridpoints) Terzperatures

F28) T T T T T 600K

oz

5000K

agosx H

000K |

2000K |

(1) -
1000k

3 . g

° .
o , R R . . o . , A
Oca 20em 4%ca S0cm s0ca 100ca Ocm 20 4%ca €0cm S0cm 100cm
Figure Ia Mass fraction Figure 1b Temperatures
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The outlet pressure has not been specified because the outlet flow is expected to be supersonic.
The results are shown in Figures la and 1b. Figure la represents the mass fraction of the species
NO, O,, N and O, Figure Ib represents the vibrational temperature of species N,, O,, NO and
the translational temperature. These results have been obtained over 500 grid points in only
20 sec of CPU time of a 4.2MFLOPS workstation. The results compared with that in Reference
9 show agreement.

Chiang and Hoffmann nozzle

This nozzle is described and shaped as'4:
S(x)=1.398+0.347 tanh(0.8x—0.4)

where x is in cm. The nozzle starts at 1.2 cm and ends at 8 cm with the flux from left to right.
The boundary conditions are the inlet density, velocity, pressure, and the outlet pressure. The
first test case is parametrized by:

np

"

o

CHIANG & HOFFMANN test 1 (500 gridpoints)

)
4

4 9cm 5.lcm

Pin=5529 Pa Cny=T76.71%
Pout = 2500000 Pa Co2=23.29%
1, = 6125 m/sec Cro=0%
Pin=0.08245 Kg/m? Cn=0%
Co=0%
°l
"
Figure 2a NO mass fraction

CHIANG & HCITMANN test 1 (300 gridpoints)

Figure 2b Mass fractions

CHIANG & HOFFMANN test 1 (500 gridpoints)

14000K

12000 |

10C00K |

8000K

005K

4000K

2000K

oK
4

e

3000kPa

2250kpa |

1500kpa |

750kpa

—r L

-

OkPa

$.3ca 4.%cm

Figure 2c  Temperatures
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CRIANG & ECFFMANR test 2 (500 gridpointsy CHIANG & BOFFMANY test 2 {500 gridpolota)

12 2ca 3cm cm Sca 6 Tea Bcm

Figure 3a NO mass fraction Figure 3b Mass fractions

CHIANS & ROFFMANN test 2 (500 gridpoints) CHIANG & BOFFMANN test 2 (300 gridpoints)

1890CK T T T — T T 300CPa

ol (__,_,———

1590Fa |

16000X

1400CK

12060x

10000K |

820K

200K b

2507a |
405K

200¢K

ox ofa A " N P,
1.2ca 2em Iom tcn Sca [ Tem Bcm 1.2em 2cm 3cm 4ca Sca [} Tem tca

Figure 3c Temperatures Figure 3d Pressure

and simulates the free flight conditions at 20 km altitude. The results are illustrated in Figures
2a-2d. Figure 2a shows the mass fraction of NO and Figure 2b show the mass fraction of O,,
NO, N and O. In Figure 2c the vibrational temperatures of species N,, O,, NO and the
translational temperature are illustrated. Figure 2d depicts the pressure. These results have been
obtained over 500 grid points in 190 CPU sec on a 4.2MFLOPS workstation. The second test
case is parametrized by:

Pin=3.529 Pa Cn2=76.71%
Pou:=2600 Pa Co2=23.29%
u;,,=6125 m/sec Crno=0%
£:n=0.00008254 Kg/m? Cn=0%
Co=0%

and simulates the free flight conditions at 70 km altitude. The results are illustrated in Figures
3a-3d. Figure 3a represents the mass fraction of NO and Figure 3b the mass fraction of O,,
NO, N and O. In Figure 3c the vibrational temperatures of species N,, O,, NO and translational
temperature are illustrated. Figure 3d depicts the pressure. The CPU time required for this
simulation is of 145 CPU sec.

© Emerald Backfiles 2007



398 E. BERTOLAZZI AND V. CASULLI

CONCLUSIONS

The numerical method developed in this paper permits the solution of hypersonic flow at a
relatively low computational cost. Positivity of the densities and vibrational energies is assured
even when large time steps are used. The method is quite general and can be extended to two
or three dimensional problems where the low computational cost is essential. The resulting code
is based on the inversion of linear systems of a sparse structure where vectorizable algorithms
are available.
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