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FAST, POSITIVE AND CONSERVATIVE SCHEME FOR 
CHEMICALLY REACTIVE HYPERSONIC FLOW 

ENRICO BERTOLAZZI AND VINCENZO CASULLI 
Università degli Studi di Trento, Dipartimento di Matematica, 38050 Povo, Trento, Italy 

ABSTRACT 
A finite difference method for solving the quasi one-dimensional non-equilibrium hypersonic flow equations 
in a diverging nozzle is presented and discussed. In chemically reacting flows the system of equations to 
be solved is very stiff. Some reactions may be several orders of magnitude faster than others and generally, 
they are much faster than the convective process except for very high Ma numbers. For this reason the 
development of a numerical scheme whose stability is independent of the chemical reaction rates is of 
importance. The main advantage of this scheme is the conservation of each chemical component, the 
positivity of densities and vibrational energies, as well as its relative simplicity, which results in a fast 
computer code. 
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THE GOVERNING EQUATIONS FOR QUASI 1-D INVISCID HYPERSONIC FLOW 

In the present study we will discuss a numerical method for quasi one-dimensional hypersonic 
flows. For this purpose consider the following equations for hypersonic flow in a diverging nozzle: 

where 
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with p1, p2, p3, p4, p5 being the densities of the five species N2, 0 2 , NO, N, O respectively, 
p=p1+p2+p3+p4+p5 is the total mass density, u is the velocity, m=pu is the momentum, 
p is the pressure, Ev1, Ev2, Ev3 are the vibrational energies of N2, O2 and NO, respectively, and 
E is the total energy. w1, w2, w3, w4, w5, are the source terms arising from the chemical reactions. 
S(x) is the cross-sectional area of the nozzle along the x-axis. These equations are closed with 
the assumption of calorically perfect gas for each specie which yields the following equation of 
state: 

where R is the universal gas constant, M1, M2, M3, M4, M5 are molecular masses, and the 
temperature T is determined from the following energy relation8: 

where Cvk is the specie specific heat and and are the heats of formations for the diatomic 
species N2, O2 and NO, respectively, and are summarized in Table 1. 

Equilibrium and vibrational energies are correlated by translational and vibrational 
temperatures as follows: 

In (5) T is the translational temperature and Tvk are the vibrational temperatures for the species 
k. The coefficients Θk are obtained from spectroscopic data17 and are summarized in Table 1. 
The vibrational-translational rate equation is derived in Anderson1 and needs the Landau-Teller 
relaxation time: 

that are functions of pressure and temperature; these relations are presented as semi-empirical 
equations which are valid over a temperature range8,10 from 300 to 9000 K. 

The chemistry is modelled by a Dunn and Kang13 air model, except that the ions and free 
electron, and the associated reaction steps are not included. This model comprises the five species 
N2, O2, NO, N, O, seventeen reactions and four temperatures. The chemical reactions to be 

Table 1 

N2 

o2 NO 

Θ(K) 

2270 
3390 
2740 

A 

220 
129 
168 

h° (kJ/kg) 

-33786 
-15577 
-21056 
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considered are: 

N 2 + M↔2N + M 

O2 + M ↔ 2O + M 
NO + M ↔ N + O + M (7) 

N2 + O ↔ N O + N 
NO + O ↔ O 2 + N 

where M represents any of the five species. The reaction rate for each species is determined from 
its forward and backward reaction rate coefficients. These coefficients are given by the following 
equations8,9,13: 

where we have used the mass relations M1=2a, M2=2b, M3=a+b, M4=a, M5=b and the 
shortcut: 

The parameters Kf, Kb are modelled by the Arrhenius formula1,8,9. The source terms w1 ... w5 
are obtained by combining all the reaction rates that correspond to the production or the 
consumption of species k: 

w1 = M1 (–R1–R4) 
w2 = M2(–R1+R5) 
w3=M3(–R3+R4–R5) (10) 
w4 = M4(2R1+R3+R4+R5) 
w5=M5(2R2+R3–R4–R5) 

The total density of nitrogen is: 
p N = p 1 + αp 3 +p 4 (11) 

and similarly the total density of oxygen is: 
p O = p 2 + β p 3 + p 5 (12) 
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Then we have: 

(pN)t+(upN)x=wN 

(pO)t+(upO)x=wO (13) 
where 

wN= w1+αw3+w4 

wO = w2+βw3+w5 (14) 
are the reaction rates of total nitrogen and oxygen. These conservations imply that wN=wO=0. 
Consequently: 

Thus the total mass is conserved as well. The production and consumption part of the source 
terms will be denoted with w+ and w- respectively. 

In order to simplify the construction of the upwind scheme a different form for the total energy 
equation is derived as follows. By setting: 

the energy equation in (1) can also be written as: 

which, using the densities and vibrational energies relations becomes: 

where 

The state equation now takes the form: 

From (20), one has: 

and 
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NUMERICAL SOLUTION TECHNIQUE 

Consider a discretization of the one-dimensional physical domain into a set of elementary line 
segments of length Δx. Then consider the integral form of (1) over a line segment Δx yielding: 

Now we use the mean value approximations: 

so that a semi-discrete approximation of (23) is: 

In order to specify S(xi+1/2)F(Ui+1/2, t) we decompose the flux SF in two parts, which accounts 
for the flux from left to right and for the flux from right to left. From the homogeneity of F one has: 

SF(U)=SA(U)U (26) 
where A(U) is the Jacobian of F(U) (see Table 2). Since A possesses a full set of linearly 
independent eigenvectors one can write: 

A(U) = T-1(U)Λ(U)T(U) (27) 
where Λ(U) is the eigenvalue diagonal matrix. Next we define: 

A±(U)=T-1(U)Λ±(U)T(U) (28) 
where A±(U)=diag with: 

so that A(U)=A+(U)+A-(U). Assume now that the flux travelling across i+½ in the positive 
x-direction originates at point i while the flux travelling in the negative x-direction originates 
at point i+1. Specifically, by setting 

F±(U)=A±(U)U (30) 
we define 

S(xi+1/2)F(U(xi+1/2, t)) ≈ SiF+(Ui) + Si+1F-(Ui+1) (31) 
For an easy construction of A±(U) we consider that the Jacobian A(U) has the eigenvalues 
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Table 2 Jacobian matrix A(U) 

given by: 
Λ(U)=diag(u, u, u, u, u, u, u, u, u + c, u—c) (32) 

where is the frozen speed of sound. Using the matrix T of the corresponding 
eigenvectors we are able to rapidly construct the matrices Au(J), Au+c(U) and Au-c(U) as: 

Au(U) = T-1(U)ΛuT(U) 
Au+c(U)=T-1(U)Λu+cT(U) (33) 
Au-c(U)=T-1(U)Λu-cT(U) 

with 
Λu=diag(1, 1, 1, 1, 1, 1, 1, 1, 0,0) 

Λu+c=diag(0, 0, 0, 0, 0, 0, 0, 0, 1, 0) (34) 
Λu-c=diag(0, 0, 0, 0, 0, 0, 0, 0, 0, 1) 

so that: 
A±(U)=u±Au(U) + (u + c)±Au+c(U) + (u-c)±Au-c(U) (35) 

The matrices Au(U), Au+c(U) and Au-c(U) are shown in Tables 3, 4 and 5. We now define: 
Fu(U)=Au(U)U, Fu+c(U)=Au+c(U)U, Fu-c(U)=Au-c(U)U (36) 

so that 
F±(U) = u±Fu(U)+(u+c)±Fu+c(U) + (u-c)nFu-c(U) (37) 

If the fluxes are evaluated at time level n an explicit upwind scheme results. If the fluxes are 
evaluated at time level n +1 the resulting scheme is fully non-linear at each time step. Because 
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Table 3 Matrix Au(U) 

Table 4 Matrix Au+c(U) 
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Table 5 Matrix Au-c(U) 

of the stiffness of the problem an explicit scheme is not convenient. However, the large non-linear 
system of equations arising from the implicit scheme cannot be easily solved. As a first approach 
fluxes are linearized as: 

F(Un+1)≈F(Un)+A(Un)(Un+1-Un)=A(Un)Un+1 (38) 
We can choose a semi-implicit discretization of (25) as: 

where the source term is an approximation of the term W(U(xi, t)) and the term 
approximates: 

Equation (39) constitutes a large block tridiagonal system whose blocks are full 10 × 10 matrices. 
To simplify the computational algorithm even further, we reformulate flux (31) as: 

SiG+(Ui)Ui+Si+1G-(Ui+1)Ui+1 (41) 
with G+ and G- being almost diagonal matrices satisfying: 

G+(Ui)Ui=A+(Ui)Ui and G-(Ui)Ui=A-1(Ui)Ui (42) 
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By this approach the finite difference equation (39) is replaced by 

Now we focus attention to the construction of the matrices G+ and G - . 

EVALUATION OF G± 

We can construct G± by definining the matrices Gu, Gu+c and Gu-c satisfying the relations: 
Gu(U)U=Fu(U), Gu+c(U)U=Fu+c(U), Gu-c(U)U=FU-C(U) (44) 

so that G± can be taken to be: 
G±(U)=u±(U)+(u+c)±Gu+c(U)+(u-c)±Gu-c(U) (45) 

After some manipulations one obtains: 
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Thus, the matrices Gu, Gu+c and Gu-c can be taken to be: 

Note then that the matrices G± can be written in the form: 
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where L is a 5 by 5 diagonal matrix, M is a 3 by 3 diagonal matrix, and N is a 2 by 2 full 
matrix. Once the matrices G± have been defined, the finite difference equation (39) can be 
replaced with the simpler equation (43). 

DISCRETIZATION OF CHEMICAL REACTION TERMS 

In order to develop a stable and conservative numerical scheme for the first five components 
of the differential system we write the source terms in the form C(p)p where C(p) is a 5 
by 5 matrix with the properties: 

Matrix C with properties (a) and (b) is not unique, in fact, terms like Bpipj can be written in 
either form: 

(Bpi)pj or (Bpj)pi (49) 
In this case we write: 

θ(Bpi)pj+(1-θ)(Bpj)pi (50) 
with θ being a weight parameter to be specified in such a way that properties (a) and (b) are 
both satisfied. Considering that we do not want positive terms on the main diagonal some 
choices are forced. Thus, a term Bpipj in wi where B is negative must be expressed as (Bpj)pi. 
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In summary, from (11) we have: 

The conditions (a) and (b) are satisfied when θ1, θ2,..., θ9 are given by: 

where θ1, θ2, θ3, θ4 are taken in the interval: 

so that, finally, 



CHEMICALLY REACTIVE HYPERSONIC FLOW 391 

Now we can write the semi-implicit scheme for the first five equations in the following way: 

and using the definitions of Gu, Gu+c and Gu-c results in: 

and the function matrix Ci(pn+1) is the matrix C evaluated with Γ, Ω, Kf, Kb computed at time 
level n. Note that is non-negative while is non-positive. The finite difference equation 
(54) constitutes a block tridiagonal system whose main diagonal block is non-linear. To solve 
this non-linear system, an iterative procedure has to be used. A convenient iterative scheme for 
(54) is: 

starting with until convergence is reached. 

POSITIVITY OF THE METHOD 

The iteration formula (56) allows us to maintain positivity of the densities at every time step. 
To see this, we prove the following theorem: 

Theorem 5.1 Let the semi-implicit difference approximation be: 

with i= 1, 2 , . . . , m-1 where: 

and for sake of simplicity . Clearly, and are non-negative diagonal matrices 
and the matrix Ci satisfies: 

If (boundary conditions) and , one has for all i = 1 , 2 , . . . , m - 1 . 

Proof 
We can regard the iteration step (57) as an inversion of a linear system of the form: 

M{p')p,+1=Z (58) 
where 
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and 

with . Since are weakly diagonally dominant (along the columns), with 
positive elements on the main diagonal and non-positive elements elsewhere, and since and 

are non-negative diagonal matrices, it follows that M is a strictly diagonally dominant 
matrix along the column with positive elements on the main diagonal and non-negative ones 
elsewhere. Thus M(pl) is an M-matrix. Consequently, [M(pl)]-1≥0 and hence [M (p l)]-1Z≥0. 

The result above proves that each iteration (pn+1)l is positive and, when convergence is 
achieved, the resulting pn+1 is positive as well. 

When convergence is reached the source terms are: 

For the conservation of species masses we need 

which are verified by straightforward computation. This means that the numerical method 
conserves the total amount of nitrogen and oxygen. Equations (62) are used as convergence 
criterion for iterations (56). 

DISCRETIZATION OF VIBRATIONAL TERMS 

In the previous sections we have developed the upwind scheme for the flux, separating the 
vibrational energies and density from the other conserved variables. In this section we analyse 
the approximation of the source terms W(Un+1, Un) for the equations of vibrational energies. 
In order not to destroy the positivity of the resulting flux matrix, we approximate the source 
terms as: 

With this choice the finite difference scheme is of the form: 

where: 
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Equations (64) can be rewritten as: 

Note that (66) constitute a linear system whose coefficient matrix is an M-matrix and the vector 
on the right hand side is always positive. Thus the vibrational energies maintain positivity at 
each time step. We also note that the unknowns are separated for every k, then we can 
solve three simpler tridiagonal systems rather than one block tridiagonal system. 

DISCRETIZATION OF REMAINING TERMS 

In the momentum and total energy equations of system (1) there is no way to ensure positivity 
of the pressure for arbitrarily large time steps. Actually, we use a simple discretization that uses 
the information of already evaluated variables. Next, if a negative pressure is encountered we 
repeat the evaluation with a smaller time step. Explicitly, by setting , from (20) 
and (21) we have: 

Thus, by setting 

and 

the finite difference system for the momentum and total energy becomes: 

where N is defined as in (47). 

BOUNDARY CONDITIONS 
As an inflow condition, supersonic inflow is chosen. All the characteristic lines are entering and 
consequently all the variables have to be specified. The outlet is subsonic and thus one eigenvalue 
has opposite sign. This represents the disturbance coming from downstream. In this case one 
condition must be specified and therefore the pressure at the outlet is prescribed. The boundary 
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conditions are applied using the method of Courant-Isaacson and Rees6. For the actual 
calculations it is advantageous to rewrite the equations for m and E as equations in u and p, 

where 

using matrix notation we can rewrite system (71) as: 

where 

Next we multiply this system by the matrix T: 

obtaining the new system: 

Observing that: 
TA=ΛT (77) 

where Λ=diag(u+c, u-c), we obtain: 

Using the directional derivative: 
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after some manipulations the complete system takes the form: 

Using this relation it is easy to construct the one step method of characteristic. But because of 
the very stiffness of the problem we assume that at the outlet the gas is in chemical equilibrium 
so that WE=0. 

NUMERICAL RESULTS 

The code was tested with two different problems: the Antibes nozzle, defined during Antibes 
Workshop I, January 1990 and Antibes workshop II, April 1990 and the Chiang and Offmann 
nozzle14. 

Antibes nozzle 
In the Antibes test case the nozzle shape is as follows: the throat radius, r0=0.003 m; the half 

cone angle Θ = 10°; length = 1.13 m, with the boundary conditions: 
CN2 = 69.53% 

pin=84590000 Pa CO2= 6.89% 
uin =1621 m/sec CNO=14.78% 
pin=46.21 Kg/m3 CN= 0.27% 

CO= 8.53% 
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The outlet pressure has not been specified because the outlet flow is expected to be supersonic. 
The results are shown in Figures 1a and 1b. Figure 1a represents the mass fraction of the species 
NO, O2, N and O, Figure 1b represents the vibrational temperature of species N2, O2, NO and 
the translational temperature. These results have been obtained over 500 grid points in only 
20 sec of CPU time of a 4.2MFLOPS workstation. The results compared with that in Reference 
9 show agreement. 

Chiang and Hoffmann nozzle 
This nozzle is described and shaped as14: 

S(x) = 1.398+0.347 tanh(0.8x-0.4) 
where x is in cm. The nozzle starts at 1.2 cm and ends at 8 cm with the flux from left to right. 
The boundary conditions are the inlet density, velocity, pressure, and the outlet pressure. The 
first test case is parametrized by: 

pin = 5529 Pa CN2 = 76.71 % 
pout=2500000 Pa CO2=23.29% 
win=6125 m/sec CNO=0% 
pin=0.08245 Kg/m3 CN=0% 

CO=0% 
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and simulates the free flight conditions at 20 km altitude. The results are illustrated in Figures 
2a-2d. Figure 2a shows the mass fraction of NO and Figure 2b show the mass fraction of O2, 
NO, N and O. In Figure 2c the vibrational temperatures of species N2, O2, NO and the 
translational temperature are illustrated. Figure 2d depicts the pressure. These results have been 
obtained over 500 grid points in 190 CPU sec on a 4.2MFLOPS workstation. The second test 
case is parametrized by: 

pin = 5.529 Pa CN2 = 76.71% 
pout=2600 Pa CO2 = 23.29% 
uin = 6125 m/sec CNO=0% 
pin=0.00008254 Kg/m3 CN=0% 

Co=0% 
and simulates the free flight conditions at 70 km altitude. The results are illustrated in Figures 
3a-3d. Figure 3a represents the mass fraction of NO and Figure 3b the mass fraction of O2, 
NO, N and O. In Figure 3c the vibrational temperatures of species N2, O2, NO and translational 
temperature are illustrated. Figure 3d depicts the pressure. The CPU time required for this 
simulation is of 145 CPU sec. 
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CONCLUSIONS 

The numerical method developed in this paper permits the solution of hypersonic flow at a 
relatively low computational cost. Positivity of the densities and vibrational energies is assured 
even when large time steps are used. The method is quite general and can be extended to two 
or three dimensional problems where the low computational cost is essential. The resulting code 
is based on the inversion of linear systems of a sparse structure where vectorizable algorithms 
are available. 
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